Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 12(33): 4130-4138, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32766639

RESUMEN

Carbon dots (CDs) having low cost and low toxicity and synthesized via a green route were applied to establish a fluorescent nanoprobe for the measurement of glyphosate. The synthesis was realized via a one-pot hydrothermal procedure using Sophora japonica leaves as the carbon source. It was found that electron transfer occurred between Fe3+ and the as-prepared CDs. Therefore, Fe3+ exhibited a specific dynamic-quenching toward CDs. However, the electron transfer process was inhibited by glyphosate. The fluorescence of the quenched CDs/Fe3+ system was recovered by the addition of glyphosate. It resulted from the strong complexation between Fe3+ and the functional groups (like -PO3H2 and -COOH) in the glyphosate molecule. These functional groups captured Fe3+ from the CD/Fe3+ system to reduce the electron transfer. With such a design, the rapid detection of glyphosate could be realized by this turn-on fluorescent sensor based on the CD/Fe3+ system. Under optimal conditions, the CD/Fe3+ system showed a concentration-dependent fluorescent response toward glyphosate in the linear range from 0.1 to 16 ppm. The limit of detection was calculated to be as low as 8.75 ppb (3σ/S). In addition, the successful detection of glyphosate in real samples with satisfactory recoveries exhibited a practical application of the CD/Fe3+ nanoprobe in food safety and environmental monitoring.


Asunto(s)
Puntos Cuánticos , Sophora , Carbono , Glicina/análogos & derivados , Hojas de la Planta , Espectrometría de Fluorescencia , Glifosato
2.
Anal Chim Acta ; 1108: 152-159, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32222236

RESUMEN

In this study, direct detection of fluazinam was realized using a fluorescent sensor using disulfide quantum dots (MoS2 QDs) via inner filter effect (IFE). The maximum excitation of as-prepared MoS2 QDs presented a complementary spectral-overlap with the maximum absorption of fluazinam. Thus the occurrence of inner filter effect led to the significant fluorescence quenching of MoS2 QDs. Additionally, fluorescent quenching efficiency of MoS2 QDs could be enhanced by the effects of π-π stacking, hydrogen bond and electrostatic interaction between fluazinam and MoS2 QDs, and these non-chemical bond responses also promoted the selectivity for fluazinam detection. Under the optimum conditions, the IFE-based fluorescent sensor exhibited a relative wide linear range from 50 nM to 25 µM with the LOD of 2.53 nM (S/N = 3). In addition, a paper-based sensor was established by cross-linking the MoS2 QDs into cellulose membrane for naked-eyed detection and digital analysis of fluazinam. The paper-based sensor presented a liner range from 10 µM to 800 µM for fluazinam detection with the LOD of 2.26 µM. Additionally, the acceptable recoveries were obtained for fluazinam detection in the spiked samples of tomato, potato and cucumber, indicating that the proposed method provided an effective sensing platform for real applications of fluazinam detection in food safety.

3.
Talanta ; 192: 368-373, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30348404

RESUMEN

High-performance measurement of methyl parathion (MP) is of great importance in both agricultural and environmental surveillance. Herein, we presented a facile fluorescent biosensor to indirectly measure MP using N-doped carbon dots (N-CDS) based on the inner filter effect (IFE). Methyl parathion was employed as the substrate of alkaline-catalytic hydrolysis, and p-nitrophenol (p-NP) was obtained by rapid the hydrolysis reaction under strong alkaline conditions without enzymes. Interestingly, the absorption band of p-NP appeared at 403 nm, which presented an overlapping spectrum with the excitation of N-CDs (410 nm). Due to its strong molar absorptivity, p-NP played the part of a powerful absorber in IFE to influence the excitation of fluorophore (N-CDs). Through the competitive absorption, the fluorescence intensity of N-CDs decreased extremely. With optimum conditions selected, the fluorescent sensor presented a concentration-dependent fluorescent response (ΔF) to MP ranging from 0.075 to 15 ppm (R2 =0.9956). The limit of detection was calculated to be 1.87 ppb (S/N = 3) with good selectivity. Successful measurement of MP in spiked river water and apple samples demonstrated that as-proposed optical sensor provided an alternative strategy for real applications in environmental and food safety control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...